
U~c~,~~sij~~d . _____ -____

F 

oocw c~n~co~ CL DAT A I* 

~ 
‘Un ifled

University of Washington

/~~~~ djoints of project1ve transfonnatjons and face4igures of con~~ pol~topes

4. p ~~~r. flp— • -1-. [~jj cj~~i V .  iI..se.*),
~~r

f chn1cai Yf21~~~ ,~~~~
~~. A t  (*51 (Pitt! cinn~. , flai,1, fl in. nnrr

~7 TDec~~~ar ~~76 1 • 01 L NO~~~~~~~~~~ I~~~~~~~~~~~

;J

*i i 

6

~~~ ~~~~~~~~~~ Technical Report No 59
NR 044 353 

____________________________
C. V? f .  OIUER NLPOFI F 9~~’’.~ 4s,y a I in~~~ n’ F!. ii . 1 . • .sh~. r~p or I )  ~. 

. -— r

~~~~~~~ 
t

~~ ;ei;asabie wi thout limi tations on dissemi nation. 

Q

~~~~~~~~20~~
91
~~~~~~

~~ 

~ uP EMEt.1A~~ V NO T ES  $2 .  1P0N&ORIN’~ U I~~

$ 3 .  A~~

~~~ en F is a proper face of a (convex) polytope P in a Eucl idean space E,
~~ ~~~ P N

an F-figu~~_of P is. an intersection P.~cjJD where H is a hyperplane strictly

separating F from all vertices of P— E. Here it is shown how , when the origin is

interior to P, the combinatorial (and, in a sense, the projective) structure of

P’s F-figures can be described in termts of the boundary structure of the polar poly-
tope P°. The main tool is the notion of the adjoint of a projective transformation
and a ba~~~fonnula relating adjoints to polars.
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ADJOINTS OF PROJE CTIVE TRANSFOR MATIONS AND

FACE-FIGURES OF CONVEX POLYTOPES

VICTOR KLEE

Introduction. When F is a proper face of a (convex) polytope P

in a Euclidean space E , an F—figure of P is an intersection

• 
• P~N where H is a hyperp].ane strictly separating F from all

vertices of P’-F. Here it is shown how, when the origin is interi-

or to P, the combinatorial (and, in a sense , the projective) struc-

ture of P’s F—figures can be described in terms of the boundary

structure of the polar polytope P°. The main tool is the notion

of the adjoint of a projective transformation and a basic formula

relating adjoints to polars.

e a nt ve fo~~~~~~n~ Suppose that U and

V are vector spaces paired by a bilinear form in such a way that

each space distinguishes points of the other [3, pp. 137—138], and

suppose the same is trLle of X and Y. A).]. spaces are over the

same ordered field and both bilinear forms are denoted by ( ,

The treatment in tn.is section is purely algebraic, with no mention

of topology, because we are concerned primarily with cases in which

there is only one reasonable topology compatible with the algebraic

-I , - — 
~~~~~~~~~~~~~~~~~ — — .- —~~— - - -~~ -~~
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1.2

• structure———namely, those in which U V, X Y, all spaces are

Euclidean, and the bilinear forms are the usual inner products.

For any set W contained in one of two paired spaces, the

polar set is contained in the other; for example ,

W c U ~~ W0 {v ~ V: w~~ W~~ (w ,v) �i} c V.

Recall that two linear transformations S:~ itX :~ and T:Y÷v are
• mutually adkoint if (S(u),y)— (u,T(y)) for all uetJ and yEY.

In the study of convex sets, the usefulness of adjoints is due

largely to a relationship with polarity that may be regarded as a

sort of comznutatlvity of the following diagram :

U

Specifically (cf. [2, p.51]),

W c U ~~ T( ( SW )°n(dmn T)) W°n(rng T).

Theorems 1 and 2 below extend this commutatlvity result to pro—

jective transformations and their adjoints. The treatment of

projective transformations, being similar to that of [2)[5], is

rather unnatural from the viewpoint of’ projective geometry but is
I

well suited to the study of convex sets. As Is indicated later,

particular instances of adjoints appear in [2)15], though they are

• not called that in the nonlinear case. Indeed , the results of

(2]E5) would suffice for the study or face—figures. However, it

seems worthwhile to formulate the notion of’ adjoint and establish

- ~~ 
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1.3

the commutativity result in full generality , fcr they are useful In

other situations as well.

Relative to the quadruple (U,V,X,Y) and the associated

bilinear forms, a ~~~~ective transformation S~U.X is defined as a

transformation of the form

S ( • )  + S
(1) S(•) = i~— ( ,

~
)

where S0:U-s~X is a linear transformation , S1 is a point of X,

and S2 is a point of • V (of. [2, p.14][5, p.18]). We write

S~U+X, using three dots instead of two, to emphasize that the

domain of’ S may be a proper subset of U. Of course the domain

should be disjoint from the set {u ~ U: (u ,S2) 1), but subject to

that restriction various conventions are possible and the best choice

may depend on the intended application. In studying the interplay of

convexity , polarity and projectivity, the domain should be convex

and include the origin 0, and for our present purpose it is conveni-

ent to define the domain of S as the largest set satisfying the

stated restrictions. Thus

dmn S — {u c U: (u,S2) 1},

which is all of U when s2 - 0 and otherwise an open halfspace.

A ,projeotive transformation T:Y.V is of the form

T (•) + T
(2) T(’) — ,° ,~ , •

1
—

where T0:Y.V is linear, T1 V and T2 X. The transformations

S and T given by (1) and (2) respective ly are said to be mutually

adi oint if S~ and T0 are adjoint, S~ • T~ and 
~2 

- T1. To



see that this definition is meantngful, note ‘chat S0 , S 1, and

are uniquely determined by S That is obvious in the case of

S1 - S(O). For S~ and S2 it follows from a routine calcula-

tion that can be simplified by reduction to the case in which

S1 0.

Note that a projective transformation Is linear if and only if

its adjoint is linear, and is af’flne if and only If its adjoint

preserves the origin.

THEOREM 1. The p~ojective transformations S~U+X and T~Y-’V are

mutually adjoint if and only if the followin~g two conditions are

satisfied.

(a) dmn S {u c U: (u,T(O)) < l} and dmn T {y e Y: (S(O),y) < 1);

(b) for all u c dmn S and y ~ dmn T,

(S(u),y) < 1 ~~~~ (u ,T(y)) < i.

Proof. Plainly (a) holds if and only if S~ T2 and S2 = T1.

Suppose , then, that S1 = T2 x X and 
~2 

- T1 = v ~ V, and note

that for each u c dmn S and y c dmn P

1 ~~ (S0(u),y) + (u,v) + (x ,y) c ~~.

and

(u,T(y)) c 1 ~~ (u,T0(y)) + (u ,v) + (x ,y) < i

If S and P are adjoint tnen so are ~~id ~~ whence

(50(u),y) — (u,T0(y)) and condition (b) is satisfied. Suppose, on

the other hand, that S and P are not adjoint , whence there exist

u ~ U and y ~ Y such that

_ _ _  — 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



1.5

(3) (50(u),y) ~ (u,T0(y)).

In attempting to show that (b) fails we may assume x ~ 0, for a

similar argument applies when v ~ 0 and the case in which v

and x are both 0 is obvious. With x ~ 0, a simple one—dimensional

argument shows y may be replaced by a “nearby ” point of Y so as to

preserve (3) and have (x ,y) ~ 0. It is then ir~ssib1e , replacing y

by y/(x,y) and u by a sufficiently small positive multiple of u

or of —u , to preserve (3) while obtaining

max{ (S0(u),y),(u,T0(y))} + (u ,v) ‘ 0

and

(u ,v) < i — (x ,y).

We may assume

(1~) (S0(u),y) < (u ,T0(y)),

for a similar argument applies under the reverse Inequality. Since

(5) (u,T0(y)) + (u,y) + (x ,y) >

y may be replaced by (1—€)y, for a sufficiently small c > 0, so

as to preserve (4) and (5) and obtain (x ,y) c 1. But then

(6 ) u dmn S and

and in view of (4) and (5), u may be replaced by flu for some

~ £ )o ,i( so as to preserve (6) and obtain

(30(u),y) + (u,v) + (x ,y) c 2. c (u,T0(y)) + (u ,v) + (x,y).

That completes the proof of Theorem 1.

-

— - 
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1.6

THEOREM 2. For each pair of transformations S~U-’X and T~Y+V

satisfying condition (b), and for each set W dmn 3, I t Is true

that

T((SW)0n (dmn T)) = W°n(rng T).

Proof. Observe that for all y c dmn T and v = T(y) € m g  T,

the following five statements are equivalent :

V W°; w E W ~~~ (w ,v) � 1; W E w (w ,T(y)) � 1;

W E W ~~ (S(w),y) � 1; y € (SW )°.

In the applications of the next section , Theorem 2’s statement

of equality is called the basic formula.



2.1

Fa -f~~~~es of’ conv~x ~oi~tç~es. The remaining discussion is

restricted to a finite—dimensional Euclidean space E with the

usual inner product . The notion of F—figure detined In the

Introduction extends the well—known notion of a vertex—figure

[2, p.L193.

Now suppose that P and F are given , en-i H and H’ are

two hyperplanes determining F—figures of F. Fr~r each (d+1)—face

G of P, the Intersections GnH and Gnl” ar’ both empty or are

d—faces of PnH and PnH’ respectively , and since all d—faces of

PnH and PnH’ arise in this way it follows th~ t the two F—figures

are combinatorially equivalent polytopes. Wh ere F consists of

a single vertex , the vertex—figures PnH ~nd l’nH’ are sections

of the same cone arid hence are projectively rr1u~va1ent [2 , p.~ 9].

For higher—dimensional F the projective re1at .~onship among

F—figures is more complicated , and is described in Corollary ~4 below .

A polar pair of convex bodies in E is a pair (C,D) of

• compact convex sets such that C° — D and i~ C; this Implies the

origin Is Interior to both C and D. When L Is a linear subspace

of E arid C Is a convex bod ? in E with 0 e m t  C, let

denote the polar of CnL relative to L; that is cL C0nL.

The following result is easy to prove directly [4, p.91][5, p.70],

but we derive it from the basic formula to Iuustrate the use of the

formula.
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COROLLARY 1. If (C,D) Is a polar ~~ir of convex bodies In

E, L Is a linear subspace of H, and S 2~ the orthogonal pro-

jection ~~ E onto L, then

SD = CL.

Proof. Let T:L+E be the adjoint of the l inear transformation

S:E~L, arid let W = D. Since T Is mere !y f;h’~ injection of L

into E, it follows from the basic formula that

(SD)L = CnL.

The desired conclusion is obtained by taking polars of both sides

relative to L.

Now suppose that C and D are polytopes . and let 9. = dim L.

When £ < dim E it follows from [1, p.168] t.h~~; is the irr~~~e

under S of the 9.—skeleton of D, arid frcrn [6, p.1471] that there

is an £—dimensional subeomplex of D’s bouiic1 ’~ry complex that

projects biuniquely onto cL. The next result describes a situation

in which It is easy to find such a subcomplex.

COROLLARY 2. Suppose that (P,Q). is a pplar pair of polytopes

In E, F is a proper face of P, and H is a hyperplane strictly

separating F from all vertices of E’.F. Let C(Q,F) denote the

cell—complex formed ~~~~~ , all facets of Q that contain

• I = (q £ Q: f F~~~ (f,q)

the face of Q conjugate to P with respect to the polarj~y. If

0 ~ H then the ~~o~~l projection of E onto H carries

U9(Q,F) bluniquely onto
I ,’

~~~~~~~~ ~~~~ 
- 
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1 ’ 2.3

Proof. Let J~ denote the open ha1f~p~~ e in E that contains

F and is bounded by H, and let J~ denote t h e  opposi te  open

halfspace —J~ . Let R~ denote the open r~~ t;hat issues f r o r  0 ,

Is orthogonal to H, and lies in J ~ , so t h a t  the closure of

Is the polar of J~ . The polytope Q Is t~ ie i~ tersectIon of the

closed halfspaces polar to the segments [t v ] ,  where v is a vertex

of F, and for each ~uch v the conjugate l acer  v~
’ of Q lies in

the bounding hyperplane of the halfspace . N o t e  t ha t

v € F ~ v € J
4 4 [0 ,vJ °

v ~~
‘ F • v c J ~~ [O ,v]°

Since ~~(Q , F) is formed from all face ts  v’
~ of Q such tha t  v

is a vertex of F , It follows that U C ( Q , F )  i c  the “lower  ~cundary ”

of Q in the sense that

U~ (Q,F) = {q ~ 3Q: (q+R )nQ =

• Hence the orthogonal projection of. E onto H carries UC(Q,F )

biurxiquely onto the image of Q, arid by Co’~o1la~y 1 that Image is

When S is a translation of E such that 0 € iri t SF , the

polar (SF) ° is of course combinatorlally equi :alent to the polar

P0 = Q. Thus Corollary 2 ~~p1ies that , for  a i’;lven F and F ,

all F—figures of P have boundary comp1e~es ce~!binatorIally equi—

• valent to the boundary of tne complex ~~~~~~ To e5taIJ l~~i~ ~~.

stronger , projective result, we use the following variant of

[5, p.67], which extends a result of [2, p .)48).

-~ ——— ~~~~~~~~~~~~~ * ~- - - ‘--r’ ~~~~~~~~~~~~~~~~~~ “ ~ ~~~~ 
— —— ‘
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COROLLARY 3. Suppose that S~E-~E Is a projective trarisforma—

tion, 5a is its adjoint, and C is a cor ’j~ac-~ convex set In E

such that C c drnn S and 0 ~ (m t C)n(int ~I’). Then

Sa((SC)o) = C°.

Proof. By the basic formula,

Sa((SC)ofl(dfl~~S
a)) = C°n(rng 5a)

But 0 € m t  C and S Is certainly nonsingefln~’, so

S1 = 8(0) € m t  SC. Since dmn = {y ~ F: ~~1,y) i}, it

follows that (SC)° c dmn and hence

Sa((SC)o) = C°n(rng Sa) .

But (SC )° is compact and convex, whence the ;~‘me is true of

Sa((SC0)). Since C0 is compact and convex ~hile m g

open , it then follows readily that C0 c i’ng :~~~ and the proof is

complete.

I

We are now avle to explain the projec1i ve ~e1ationship among

the various face figures associated with a gIv~~ face of a polytope .

For a relative Interior point k of a compact ‘onvex set K in

E, let Kk denote the polar relative to the flrtt at’f K with

• origin translated to Ic; that is,

KIc = k + (in c (aff K)—k: L c K—k 4 (9.,ni) S i).

By Corollary 3 as applied to translations (or by (2, p.48]) the

• relative polars Kk are all projectively equivalent as k ranges

over relint K. When n • 2. the following bee-ornes the known result

on vertex—figures.

—

~~~~~

--- ‘
--— 
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2.5

COROLLARY 4. Let the notation be as in ~~~~~~~~ 2, except

that 0 c H is not required and hence the Intersection K = PnH

~~~ be an arbitrary F—figure of P. Then for each Ic € relint K

the relative pp~ar Kk Is the biunique image of VQ (Q,F) under a

projective transformation. Thus when P and P are given and n

Is the number of vertices of F, any two relative polars of

F—figures of P are projectively n—equivalent In the sense that

each can be partitioned into n polytopes so that for l�i�n the

1th po1yto~pe In the first partition Is ~~ojective1y equivalent to

~~~ ~th polytope in the second partition.

Proof. For each u E E, let S(u) = u - a. By Corollary 3,
• 55( ( SP )°) Q and hence Q is carried onto (SF)° by the pro—

jective transformation 14 inverse to 5a• By Corollary 2, the

set M(U~(Q,F)) maps biuniquely onto KIc under the orthogonal

projection 11 of E onto H, and UM Is then a projective

transformation mapping UQ (Q,F) biuriiquely onto KIc. For the

final statement of Corollary 1 note that for each facet G of

Q in Q (Q,F) , the restrietjon of JIM to admits a projective

inverse.

_ _ _ _ _ _  — - • • - - - - -‘.•  
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